

Influence of visual processing on spatial memory and navigation in young and older adulthood

PhD Defence 9th of November 2023

Marion Durteste

Supervised by Angelo Arleo & Stephen Ramanoël

In front of a jury composed of:

Dr Iris Groen, reviewer Dr Ineke van der Ham, reviewer Dr Anne-Lise Paradis, examiner Dr Matthias Kliegel, examiner

Dr Stephen Ramanoël, supervisor Dr Angelo Arleo, director

Spatial navigation in healthy ageing

Intro >

02.

Disc.

Meeting a friend

Spatial navigation in healthy ageing

Intro

02.

Disc.

Meeting a friend

Moffat, 2009, *Neuropsychol. Rev.*; Lester et al., 2017, *Neuron*; Burns, 1999, *J. Gerontol.*

Spatial navigation in healthy ageing

Intro>

Prominent navigation deficits

Negative impact on mobility and quality of life

Moffat, 2009, *Neuropsychol. Rev.*; Lester et al., 2017, *Neuron*; Burns, 1999, *J. Gerontol.*

Increased risk of cognitive decline

Current theories

Pinpointing the source of age-related navigational decline

Intro

01.

02.

Disc.

Colombo et al., 2017, Neurosci. Biobehav. Rev.; Lester et al., 2017, Neuron

Current theories

01.

02.

Disc.

Memory

Sensory

Attention span

Processing

speed

Current theories

Intro

01.

02.

Disc.

Colombo et al., 2017, Neurosci. Biobehav. Rev.; Lester et al., 2017, Neuron

3

Colombo et al., 2017, Neurosci. Biobehav. Rev.; Lester et al., 2017, Neuron

Intro >

01.

02.

Disc.

Current theories

Sensory function Attention span

Processing

speed

Intro >

01.

02.

Disc.

Could visual ageing contribute to age-related spatial navigation deficits?

Current theories

Sensory function

Attention span

rocessing

Intro>	The visual ageing hype
01.	
02.	
Disc.	

othesis

The visual ageing hypothesis

01.

02.

Intro >

Disc.

Landmarks

Geometry

Ekstrom, 2015, *Hippocampus*; Burnett et al. 2001, *Contemp. Ergo.*; Auger et al., 2012, *Plos One*

Features

Ekstrom, 2015, *Hippocampus*; Burnett et al. 2001, *Contemp. Ergo.*; Auger et al., 2012, *Plos One*

Ekstrom, 2015, *Hippocampus*; Burnett et al. 2001, *Contemp. Ergo.*; Auger et al., 2012, *Plos One*

The visual ageing hypothesis Wide array of visual deficits are associated with ageing

Disc.

02.

Intro

01.

Owsley, 2016, Annu. Rev. Vis. Sci.; Bécu et al., 2020, Nat. Hum. Behav.; Bécu et al., 2023, eLife

The visual ageing hypothesis

Wide array of visual deficits are associated with ageing

Older adults focus on lower portions of scenes whilst locomoting

Intro

01.

02.

Disc.

6

Owsley, 2016, Annu. Rev. Vis. Sci.; Bécu et al., 2020, Nat. Hum. Behav.; Bécu et al., 2023, eLife

The visual ageing hypothesis

- Wide array of visual deficits are associated with ageing
- Older adults focus on lower portions of scenes whilst locomoting
- Recent work points towards an age-related preference for geometric over landmark cues

Intro

01.

02.

Disc

Owsley, 2016, Annu. Rev. Vis. Sci.; Bécu et al., 2020, Nat. Hum. Behav.; Bécu et al., 2023, eLife

Storsve et al, 2014, J. Neurosci.; Li and King, 2019, Neurosci. Biobehav. Rev.

cortex

Storsve et al, 2014, J. Neurosci.; Li and King, 2019, Neurosci. Biobehav. Rev.

7

Storsve et al, 2014, J. Neurosci.; Li and King, 2019, Neurosci. Biobehav. Rev.

Neural correlates of navigation deficits

01.

Intro

02.

Disc.

Storsve et al, 2014, J. Neurosci.; Li and King, 2019, Neurosci. Biobehav. Rev.

cortex

Aims of the present work

Neural bases of visual cue-based navigation throughout adulthood

 \bigcirc

01.

Do different types of visual cues elicit distinct neural patterns?

What are the age-related neural differences during object-based navigation?

02. The ver spatial through

tical position of information for memory and navigation out adulthood

Study 1 Methods

01.

02.

Disc.

Do different types of visual cues elicit distinct neural patterns?

Modality: fMRI

Experiment: Virtual spatial navigation task

Virtual environment: Y-maze

Sample: 25 young adults (25.4 ± 2.7 y.o.)

Study 1 Methods

01.

02.

1

Disc.

Do different types of visual cues elicit distinct neural patterns?

Modality: fMRI

Experiment: Virtual spatial navigation task

Virtual environment: Y-maze

Sample: 25 young adults (25.4 ± 2.7 y.o.)

Study 1 Methods

01.

02.

1

Disc.

Do different types of visual cues elicit distinct neural patterns?

Modality: fMRI

Experiment: Virtual spatial navigation task

Virtual environment: Y-maze

Sample: 25 young adults (25.4 ± 2.7 y.o.)

• silversight

Durteste*, Ramanoël* et al, 2022, Hum. Brain Mapp.

01.

Study 1 Methods

02.

1

Disc.

Do different types of visual cues elicit distinct neural patterns?

Modality: fMRI

Experiment: Virtual spatial navigation task

Virtual environment: Y-maze

Sample: 25 young adults (25.4 ± 2.7 y.o.)

Durteste*, Ramanoël* et al, 2022, Hum. Brain Mapp.

01.

Study 1 **Methods**

02.

1

Disc.

Do different types of visual cues elicit distinct neural patterns?

Modality: fMRI

Experiment: Virtual spatial navigation task

Virtual environment: Y-maze

Sample: 25 young adults (25.4 ± 2.7 y.o.)

Durteste*, Ramanoël* et al, 2022, Hum. Brain Mapp.

01.

Study 1 **Methods**

02.

1

Disc.

Do different types of visual cues elicit distinct neural patterns?

Modality: fMRI

Experiment: Virtual spatial navigation task

Virtual environment: Y-maze

Sample: 25 young adults (25.4 ± 2.7 y.o.)

Durteste*, Ramanoël* et al, 2022, Hum. Brain Mapp.

Study 1 Behavioural results

01.

Intro

02.

Disc.

Navigation performance is equivalent across conditions

Trial number

Trial number

Navigation performance is equivalent across conditions

Study 1 Neuroimaging results

[Geometry > Control]

Ventral

[Landmark > Control]

Intro

01.

02.

Disc.

Ventral

[Feature > Control]

Ventral

(p < 0.001 unc., k = 10 voxels)

Study 1 Neuroimaging results

[Geometry > Control]

Intro

[Landmark > Control]

Disc.

Study 1 Take-home message

Intro

01.

02.

Disc.

Each type of visual cue elicits a specific pattern of neural activation

Durteste*, Ramanoël* et al, 2022, Hum. Brain Mapp.

01.

Study 2 Methods

02.

2

Disc.

What are the age-related neural differences during landmarkbased navigation?

Modality: fMRI

Experiment: Virtual spatial navigation task

Virtual environment: Y-maze

Sample: 21 older adults (73.0 ± 3.9 y.o.) 25 young adults (25.4 ± 2.7 y.o.)

01.

Study 2 Methods

02.

2

Disc.

What are the age-related neural differences during landmarkbased navigation?

Modality: fMRI

Experiment: Virtual spatial navigation task

Virtual environment: Y-maze

Sample: 21 older adults (73.0 ± 3.9 y.o.) 25 young adults (25.4 ± 2.7 y.o.) Landmark condition

01.

Study 2 Methods

02.

2

Disc.

What are the age-related neural differences during landmarkbased navigation?

Modality: fMRI

Experiment: Virtual spatial navigation task

Virtual environment: Y-maze

Sample: 21 older adults (73.0 ± 3.9 y.o.) 25 young adults (25.4 ± 2.7 y.o.) Landmark condition

14.3% error rate in older adults vs. 0% rate in young adults (p < 0.001)

Study 2 Neuroimaging results

01.

02.

Disc.

[Young > Older]

x = -33

During landmark-based navigation, older adults display decreased activity in visual regions

t-value

x = -33

During landmark-based navigation, older adults display decreased activity in visual regions

During landmark-based navigation, older adults display decreased activity in visual regions

During landmark-based navigation, the OPA is more active in older adults

Study 2 Take-home message

01.

02.

Disc

Intro

Activity in high-level visual regions differs between young and older adults during navigation

01.

Intro

Importance of visual processing for navigation as • visual cues influence participants' spatial behaviour

- visual cues modulate underlying neural patterns

Disc.

02.

01.

Intro

- Importance of visual processing for navigation as • visual cues influence participants' spatial behaviour

 - visual cues modulate underlying neural patterns
- Older adults exhibit increased engagement of the OPA during landmark-based navigation

Disc.

02.

- Importance of visual processing for navigation as
 - visual cues influence participants' spatial behaviour
 - visual cues modulate underlying neural patterns •

Older adults exhibit increased engagement of the OPA during landmark-based navigation

Intro

01.

02.

Disc.

Importance of visual processing for navigation as

Intro

01.

02.

Disc

- visual cues influence participants' spatial behaviour
- visual cues modulate underlying neural patterns •

Older adults exhibit increased engagement of the OPA during landmark-based navigation

17

Could the vertical position of landmarks be playing a role?

Aims of the present work

02.

The vertical position of information for spatial memory and navigation throughout adulthood

(4

5

Does the vertical position of objects condition mnemonic performance?

How do gaze patterns adapt to the position of landmarks during spatial navigation?

What is the implication of scene-selective regions in encoding the vertical position of landmarks?

Study 3 Methods

01.

02.

(3)

Disc.

Does the vertical position of objects condition mnemonic performance?

Modality: Desktop-based + Eye tracking

Experiment: Source monitoring task

Stimuli: Everyday objects

Sample: 21 older adults (75.3 ± 3.8 y.o.) 26 young adults (29.1 ± 4.2 y.o.)

01.

Study 3 Methods

Does the vertical position of objects condition mnemonic performance?

Modality: Desktop-based + Eye tracking

Experiment: Source monitoring task

Stimuli: Everyday objects

Sample: 21 older adults (75.3 ± 3.8 y.o.) 26 young adults (29.1 ± 4.2 y.o.)

02.

(3)

Disc.

01.

02.

Disc.

(3)

Study 3 Methods

Does the vertical position of objects condition mnemonic performance?

Modality: Desktop-based + Eye tracking

Experiment: Source monitoring task

Stimuli: Everyday objects

Sample: 21 older adults (75.3 ± 3.8 y.o.) 26 young adults (29.1 ± 4.2 y.o.)

19

Study 3 Methods

Multinomial Processing Tree Modelling

Intro

01.

Study 3 Methods

Multinomial Processing Tree Modelling

Intro

01.

Parameters related to item memory

- **Item-up** \rightarrow Prob. of remembering UP objects
- **Item-down** → Prob. of remembering DOWN objects

Parameters related to spatial memory

- **Spatial-up** \rightarrow Prob. of remembering the position of UP objects
- **Spatial-down** → Prob. of remembering the position of DOWN objects

Study 3 Results

Study 3

Study 3

Study 3

Study 3 Take-home message

01.

Intro

Disc.

The vertical position of objects conditions spatial memory performance in older adults

Study 4 Methods

01.

02.

(4

Disc.

How do gaze patterns adapt to the position of landmarks during spatial navigation?

Modality: Desktop + Eye tracking + EEG

Experiment: Virtual spatial navigation task

Virtual environment: City-like (4 streets)

Sample: 21 older adults (75.8 ± 3.8 y.o.) 21 young adults (29.0 ± 4.3 y.o.)

Durteste*, Delaux* et al., 2023, BioRxiv

01.

Study 4 Methods

02.

4

Disc.

How do gaze patterns adapt to the position of landmarks during spatial navigation?

Modality: Desktop + Eye tracking + EEG

Experiment: Virtual spatial navigation task

Virtual environment: City-like (4 streets)

Sample: 21 older adults (75.8 ± 3.8 y.o.) 21 young adults (29.0 ± 4.3 y.o.)

01.

02.

Disc.

Study 4 Methods

How do gaze patterns adapt to the position of landmarks during spatial navigation?

Modality: Desktop + Eye tracking + EEG

Experiment: Virtual spatial navigation task

Virtual environment: City-like (4 streets)

Sample: 21 older adults (75.8 ± 3.8 y.o.) 21 young adults (29.0 ± 4.3 y.o.)

Participants learn the position of the goal during passive navigation

Participants retrieve the goal from various starting positions

Study 4 Methods

DOWN condition

01.

02.

Disc.

Intersection 2

Intersection 1

UP condition

MIX condition

MIX condition

Study 4 Methods

Gaussian mixture modelling

Intro

01.

Study 4 Methods

Gaussian mixture modelling

02.

01.

Intro

Disc.

Intro

Durteste*, Delaux* et al., 2023, BioRxiv

Intro

Durteste*, Delaux* et al., 2023, BioRxiv

Intro

Y coordinates

Intro

Durteste*, Delaux* et al., 2023, BioRxiv

Intro

Durteste*, Delaux* et al., 2023, BioRxiv
Study 4 Eye tracking results

Intro

Durteste*, Delaux* et al., 2023, BioRxiv

27

Study 4 Eye tracking results

Intro

Durteste*, Delaux* et al., 2023, BioRxiv

Study 4 Take-home message

01.

02.

Disc.

Intro

Older adults exhibit a systematic downward gaze bias, irrespective of landmark position

Durteste*, Delaux* et al., 2023, BioRxiv

Study 5 Methods

01.

02.

(5)

Disc.

What is the implication of sceneselective regions in encoding the vertical position of landmarks?

Modality: fMRI

Experiment: Virtual spatial navigation task

Virtual environment: City-like (1 int.)

Sample: 20 older adults (74.0 ± 5.1 y.o.) 24 young adults (28.1 ± 4.0 y.o.) 29

01.

Study 5 Methods

02.

(5)

Disc.

What is the implication of sceneselective regions in encoding the vertical position of landmarks?

Modality: fMRI

Experiment: Virtual spatial navigation task

Virtual environment: City-like (1 int.)

Sample: 20 older adults (74.0 ± 5.1 y.o.) 24 young adults (28.1 ± 4.0 y.o.)

01.

Study 5 **Methods**

Fixation

cross

Fixate the central

02.

(5)

Disc.

What is the implication of sceneselective regions in encoding the vertical position of landmarks?

Modality: fMRI

Experiment: Virtual spatial navigation task

Virtual environment: City-like (1 int.)

Sample: 20 older adults (74.0 ± 5.1 y.o.) 24 young adults (28.1 ± 4.0 y.o.)

2000 ms

Study 5 Methods

01.

Intro

02. **>**

Disc.

30

Study 5 Methods

Intro

01.

02. >

Disc.

Half

UP

30

Study 5 Methods

Half

Intro

01.

02.

Disc.

UP

01.

Study 5 Methods

Univariate and representational similarity analyses

02.

Disc.

Experimental stimuli

01.

Study 5 Methods

Univariate and representational similarity analyses

31

01.

Study 5 Methods

Univariate and representational similarity analyses

Representational similarity matrix

Similarity

Study 5 Behavioural results

Intro

32

Intro

33

Intro

Theoretical Matrices

Upper Useful Position

Lower Useful Position

Intro

Theoretical Matrices

Absolute Position Does the region encode the absolute position of visual information?

Upper Useful Position

Useful Position

Lower Useful Position

Intro

Theoretical Matrices

Absolute Position

Upper Useful Position

Useful Position

Does the region encode the position of useful information?

Lower Useful Position

Intro

Theoretical Matrices

Upper Useful Position Does the region encode the upper position of useful information?

Lower Useful Position

Intro

Intro

Searchlight-based analysis

01.

Intro

02.

Disc.

Intro

Intro

01.

Intro

Scene-selective regions parse the vertical position of navigationally-relevant information in young and older adults

02.

Vertical position is a key object property that guides behaviour and subtending neural patterns

Discussion

« Perceiving the position of static external objects is unimpaired in older adults » *(Lester et al., 2017)*

02.

Disc.

Discussion

01.

« Perceiving the position of static external objects is unimpaired in older adults » (Lester et al., 2017)

Disc.

Lester et al., 2017, Neuron

Discussion

01.

« Perceiving the position of static external objects is unimpaired in older adults » (Lester et al., 2017)

Disc.

Impaired spatial memory for upper visual field objects

Lester et al., 2017, Neuron

Discussion

01.

« Perceiving the position of static external objects is unimpaired in older adults » (Lester et al., 2017)

Disc.

Impaired spatial memory for upper visual field objects

Systematic downward gaze bias during navigation

43

Lester et al., 2017, Neuron

Discussion

Memory

600

Cognitive

load

Visual function

01.

02.

Disc.

Could visual ageing contribute to age-related spatial navigation deficits?

rocessing

speed

44

Colombo et al., 2017, Neurosci. Biobehav. Rev.; Lester et al., 2017, Neuron

Perspectives

The source of age-related upper visual field decline

01.

Disc.>

Kupers et al., 2022, Plos Comp. Biol.; Himmelberg et al., 2022, Nat. Comm.; Saftari and Kwon, 2018, J. Physiol. Anthropol.

Retinal ganglion cells account for < 10% of perceptual variations around the visual field.
Perspectives

The source of age-related upper visual field decline

01.

Disc.

Kupers et al., 2022, Plos Comp. Biol.; Himmelberg et al., 2022, Nat. Comm.; Saftari and Kwon, 2018, J. Physiol. Anthropol.

Retinal ganglion cells account for < 10% of perceptual variations around the visual field.

Remodelling of the visual system: less space dedicated to processing the upper visual field.

01.

Perspectives

The source of age-related upper visual field decline

Kupers et al., 2022, Plos Comp. Biol.; Himmelberg et al., 2022, Nat. Comm.; Saftari and Kwon, 2018, J. Physiol. Anthropol.

Retinal ganglion cells account for < 10% of perceptual variations around the visual field.

Remodelling of the visual system: less space dedicated to processing the upper visual field.

Rounding of the back, eyelid drooping, fear of falling lead to greater lower visual field use.

01.

Perspectives

The source of age-related upper visual field decline

Kupers et al., 2022, Plos Comp. Biol.; Himmelberg et al., 2022, Nat. Comm.; Saftari and Kwon, 2018, J. Physiol. Anthropol.

Retinal ganglion cells account for < 10% of perceptual variations around the visual field.

Remodelling of the visual system: less space dedicated to processing the upper visual field.

Rounding of the back, eyelid drooping, fear of falling lead to greater lower visual field use.

Perspectives

X-ray OPTOMETRY Appointments Only •

"Size and placement of signs are important considerations for the elderly. A sign placed above a door is too high for an elder to see."

01.

02.

Disc.>

46

01.

02.

Disc.>

Perspectives

Public spaces described as confusing and non-descript. Emphasis should be placed on landmark properties.

"Size and placement of signs are important considerations for the elderly. A sign placed above a door is too high for an elder to see."

Melore, 1997; Barnes et al., 2016, J. Archit. Plann. Res.; Yu et al., 2010, Vis. Res.

Age-friendly designs

01.

02.

Disc.

"Size and placement of signs are important considerations for the elderly. A sign placed above a door is too high for an elder to see."

Perspectives

Public spaces described as confusing and non-descript. Emphasis should be placed on landmark properties.

Could the upper visual field be stimulated in older adults? Perceptual training can enlarge the visual fields for reading.

Melore, 1997; Barnes et al., 2016, J. Archit. Plann. Res.; Yu et al., 2010, Vis. Res.

Age-friendly designs

Training programs

Thank you for your attention

A warm thank you to all the participants who lent me their brain!

Supervisors

Angelo Arleo, Stephen Ramanoël, Dr Christophe Habas

Participant recruitment

Fabienne Tzvetkov-Ricard, Jérôme Gillet, Sonia Combariza, Aude Tremolada

Collaborators

Alexandre Delaux, Bilel Benziane, Luca Liebi, Marcia Bécu

Students

Louise Van Poucke, Emma Massy, Emma Sapoval

MRI support Dr. Rosalie Nguyen, Dr. Sophie Espinoza, Prof. Jean-Noël Vallée, Hervé Bargy and everyone else at the MRI facility!

Supplementary Slides

01.

02.

Disc.

Study 1 Methods

Geometry condition

Feature condition

01.

Study 1 **Baseline characteristics**

Variables	Mean (±S
Age	25.4 (± 0
Males / Females	18 / 7
Total brain volume (cm3)	1301(± 1
MMSE	30.0 (± 0
3D mental rotation	18.3 (±0
Corsi forward	$7.2(\pm 0)$
Corsi backward	$6.2(\pm 0.1)$
Perspective taking test	15.3 (± 1

02.

Disc.

EM)

0.5)

- 18)
- (0.0
- 0.9)
- .2)
- .3)
- .7)

Participants' behavioural performance during the encoding phase.

Study 1 Behavioural results

01.

Intro

Participants' behavioural performance during the test phase.

Navigation time

No significant sex-related differences in navigational performance.

Strategy use

Intro

01.

02.

Disc.

All participants used a response-based strategy during the geometry condition.

Whole-brain analyses: direct comparison between cue conditions

Intro

(p < 0.001 uncorrected, k = 10 voxels)

Conjunction $[\mathsf{OBJ} \cap \mathsf{GEO} \cap \mathsf{FEAT}]$ R R ITG x = 42

02.

01.

Intro

Disc.

(p < 0.001 uncorrected, k = 10 voxels)

Whole-brain analyses: [Landmark > Fixation]

Intro

01.

02.

Disc.

		\mathbf{H}	BA	k
Group Analyses [LMK > Fix]				
[Young > Old]	No significant activation			
[Old > Young]	Middle Frontal Gyrus	R		22
	Angular Gyrus [Superior Parietal Gyrus] [Supramarginal Gyrus]	L		223
	Middle Frontal Gyrus	R		34
	Cerebellum	R	-	23
	Middle Frontal Gyrus	L		127
	Superior Parietal Gyrus [Angular Gyrus]	R		36

X	У	Z	t	
24	47	-1	6.06	
• •				
-30	-64	47	5.66	
-33	-55	44	5.59	
-48	-43	44	5.32	
39	38	17	5.37	
33	47	20	4.47	
36	-73	-22	5.19	
2.0				
-42	5	41	5.14	
-45	26	26	5.13	
-45		50	5.12	
15	5	20	5.12	(p < 0.001
30	55	11	1 80	uncorrected,
20	-55		4.07	k = 10 voxels
30	-64	53	4.64	-

					-				
			H	BA	k	X	У	Z	t
	Group Analyses [CTRL > Fix]								
	[Young > Old]	No significant activation							
	[Old > Young]	Middle Frontal Gyrus [Middle Frontal Gyrus]	L	8	80	-27 -36	32 23	56 56	5.56 4.58
		[Superior Frontal Gyrus]		6		-18	32	62	4.05
		Superior Temporal Gyrus	R	-	18	36	17	-19	4.71
		Superior Frontal Gyrus	R	10	32	12	56	-10	4.56
		[Middle Frontal Gyrus]				15	44	-4	4.02
Whole-brain	n analyses:	Inferior Temporal Gyrus	L	37	25	-54	-49	-13	4.39
[Control >]	Fixation J	Supramarginal Gyrus	R	40	31	42	-40	41	4.23
		[Superior Parietal Gyrus]		7		33	-46	38	4.21
		Superior Frontal Gyrus	L	32	14	-12	41	2	4.16
		[Middle Frontal Gyrus]				-18	41	-4	4.10
		Inferior Frontal Gyrus	L	46	38	-36	35	14	4.15
						-48	41	11	3.85
		Precuneus	R	31	12	9	-58	38	4.00
		Middle Frontal Gyrus	L	8	20	-51	20	41	3.92
		Mildule I Tolliul Oylub	Ľ	U	20	-48	11	50	3.81
		Inferior Frontal Gyrus	L	45	12	-57	23	8	3.79

L			

00	
UZ.	

01.

Disc.

(p < 0.001 uncorrected, k = 10 voxels)

Whole-brain analysis: [Landmark > Control]; [Landmark]

01.

02.

Disc.

Cortical representation of the central visual field

Cortical representation of the peripheral visual field

Intro

01.

02.

Disc.

Results from univariate ROI analysis looking at subregions of the hippocampus

Concomitant hippocampal and striatal activity during the geometry condition.

Intro

01.

Hippocampus Striatum

Study 2 **Methods: Functional Localizer**

One-back repetition task

Intro

01.

02.

Disc.

[Scene > Face + Object]

Study 2 **Baseline characteristics**

	Gro	ups	
	Mean (:	± SEM)	
Sex (M/F)	Young 18/7	Older 7/10	<i>p</i> -value
Age ¹	25.4 (±0.5)	73.0 (±0.9)	<i>p</i> < 0.001
Total brain volume (cm3) ¹	1301 (±18)	1061 (±23)	<i>p</i> < 0.001
MMSE ²	30.0 (±0.0)	28.8 (±0.4)	p < 0.001
3D mental rotation ¹	18.3 (±0.9)	12.7 (±1.2)	<i>p</i> < 0.001
Corsi forward ²	7.2 (±0.2)	4.4 (±0.2)	p < 0.001
Corsi backward ²	6.2 (±0.3)	4.6 (±0.2)	p < 0.001
Perspective taking ²	15.3 (±1.7)	46.1 (±6.7)	p < 0.001

Intro

01.

02.

Disc.

ES*	95% CI of the difference
14.8	[45.6, 49.7]
-2.67	[-297.6, -183.3]
-0.61	[-2.0, -0.0]
-1.20	[-8.8, -2.7]
-0.80	[-4.02.0]
	[, =]
-0.54	[-2.0, -1.0]
0.65	[16.8, 35.7]

Study 2 **Behavioural results**

01.

Intro

02.

Disc.

Navigation time (control condition)

Study 2 Behavioural results

Navigation time by trial number

Intro

01.

02.

Disc.

8

Intro

Cerebral regions whose activity for the contrast [Landmark > Control] was predicted by navigation time (p < 0.001 uncorrected, k = 10 voxels)

Study 2

Neuroimaging results

Group analyses							
[Landmark > Control]	Η	BA	k	X	У	Z	
Within-group [Young]							
Inferior Occipital Gyrus	R	18	65	30	-88	-10	5.
Superior Temporal Gyrus	L	38	21	-48 -42	20 11	-25 -22	4. 4.
Cerebellum Crus I-II	R	-	19	33	-82	-34	4.
Middle Occipital Gyrus [Inferior Occipital Gyrus]	L	18 19	37	-30 -39	-97 -85	-7 -13	4. 3.
Inferior Temporal Gyrus (Amygdala/Hippocampus)	L	53/54	15	-30	-1	-22	4.
Middle Occipital Gyrus	R	19	16	48	-79	2	4.
Within-group [Older]							
No significant activation							
Between-group [Young > Older]							
Inferior Temporal Gyrus (Amygdala/Hippocampus)	L	-	12	-33 -36	2 -7	-25 -25	3. 3.
Between-group [Older > Young]							
No significant activation							

01.

02.

Disc.

t	ES [95%-CI]	
.07	4.49[3.04, 5.95]	
.54 .01	2.55[1.63, 3.47] 2.52[1.49, 3.55]	
.49	2.75[1.74, 3.76]	
.42 .54	3.38[2.12, 4.64] 3.25[1.74, 4.76]	
.37	1.43[0.89, 1.97]	
.20	1.85[1.13, 2.57]	

3.86 2.49[1.43, 3.56]

3.82 2.13[1.12, 3.05]

01.

Study 2 Neuroimaging results

02. Disc.

Results from univariate ROI analyses contrasting landmark and control conditions to fixation.

Young

Older

Results from univariate ROI analyses contrasting the landmark condition to the control condition

We confirmed that low-level visual processing (e.g., fixation behaviour) was not driving the increased OPA activity.

Study 3 Visual field asymmetries

01.

Intro

02.

Disc.

Properties	LVF
	Larger extent (70.80°)
Shape of Visual field	(Fortenbaugh et al., 2015)
Stereopsis	Crossed disparities – near targets (Previc et al., 1995)
Motion perception	Advantage for the LVF (Lakha & Humphreys, 2005; Amanedo et
Attention	Greater spatial resolution (He et al., 1996, 97)
Spatial vision	More sensitive in low-to-moderate frequency range (Lundh et al., 1983; Murray et al., 1983)
Perception	More global – stereomotion (Previc, 1990; Christman, 1993; Zito et al., 2016)
Visual search	Advantage for the UVF (Previc & Naegele, 2001; Pflugshaupt et a
Spatial judgments	Egocentric (Sdoia et al., 2004; Zhou et al., 2017)

UVF

Smaller extent (50-60°) (Fortenbaugh et al., 2015)

Uncrossed disparities – far targets (Previc et al., 1995)

al., 2007; Zito et al., 2016)

Greater spatial attention (Previc & Blume, 1993; Erel et al., 2019)

More sensitive in high-frequency range (Lundh et al., 1983; Murray et al., 1983)

More local - object perception (Previc, 1990; Christman, 1993, Beer et al., 1996; Zito et al., 2016)

al., 2009)

Allocentric (Sdoia et al., 2004; Zhou et al., 2017)

Study 3 Neuropsychological profiles **Young adults** 11 M / 14 F

Disc.

Intro

01.

02.

Variables	Mean (±SD)
MMSE	29.2 (± 1.1)
3D Mental rotation	15.9 (± 5.7)
Corsi forward	6.3 (± 1.1)
Corsi Backward	6.0 (± 1.2)
Perspective taking	23.8 (± 19.1)

Older adults 8 M / 12 F

Mean (±SD)

- $28.2 (\pm 1.5)$
- 8.5 (± 5.3)
- $4.5 (\pm 0.8)$
- $4.5 (\pm 0.8)$

51.2 (± 28.2)

Intro		Study 3 Posults	
01.		RE3	σαιτο
02. >	Group	Hit Rate (M ± SD)	False aları Rate (M ±
Disc.	Young (n = 25)	81.5% ± 14.6%	$4.4\% \pm 3.0$
	Older (n = 20)	69.1% ± 17.3%	$10.2\% \pm 9$.

m Correct rejection SD) Rate (M ± SD) 6% 93.3% ± 5.1% .0% 82.1% ± 17.4%

0.4

Study 3 **Reaction time results**

01.

02.

Disc.

Intro

Blocks

Intro

Visual acuity (LogMar)

0.8

0.6

0.4

0.2

0.0

Contrast sensitivity

Pelli Robson Log Score

Study 3 Visual field results

**

* 80 60 40 VMA 20 0 -20 V1 III1 UVF

Isopters

Disc.

02.

Intro

01.

Intro

02.

Disc

Older adults' probability of guessing that an item is old is lower than young adults'. No age-related difference in the probability of guessing that an item is situated in the UVF.

Intro

No effects of pre-exposure on spatial memory performance in young and older adults.

False alarms were not biased for the lower visual field in neither young nor older adults.

Intro

Item-Source results

Group-level parameter $\Phi(\mu)$ on probability scale

Complementary Study OCT results

Superior to Inferior Retinal Thickness Ratio

01.

Intro

02.

Disc.

RPE

Mean number of errors per intersection

Older adults make less errors on repeated routes than on new routes.

Study 4 Behavioural results

Intro

01.

02.

Disc.

Mental map

Study 4 **Behavioural results**

Intro

Male

Intro

01.

02.

Study 4 Eye tracking results

02.

01.

Intro

Young adults modulate their gaze patterns to the upper AOI according to the condition.

Study 4 **EEG results**

a. Average activity per age group & condition

02.

Intro

01.

Study 4 EEG results

a. Average activity per age group & condition

02.

Intro

01.

Study 4 **EEG results**

a. Average activity per age group & condition

02.

Intro

01.

Study 5 Behavioural results

01.

Intro

02.

Disc.

Reaction times (ms)

Older

Young

01.

Intro

[*Half* – DOWN > Active Baseline]

>

[*Half* – UP > Active Baseline]

OPA

PPA

MPA

[Full – DOWN > Active Baseline]

>

Intro

01.

OPA PPA

•

[*Full* – UP > Active Baseline]

t-values

[*Full* – DOWN > *Half* – DOWN]

Disc.

Intro

01.

02.

[Full - UP > Half - UP]

Intro

01.

02.

Disc.

Theoretical RSMs

- Useful Position -
 - Upper Useful Position
 - Lower Useful Position
- Absolute Position
- Saliency -----

Similarity

Study 5

Neuroimaging results

	OPA	PPA	MPA
Absolute Position > Useful Position	t(266) = -2.23	t(266) = -0.44	t(266) = -4
	p = 0.62	p = 1.00	p = 0.006
Absolute Position > Upper Useful Position	t(266) = -1.15	t(266) = 0.086	t(266) = -2
	p = 1.00	p = 1.00	p = 0.26
Absolute Position > Lower Useful Position	t(266) = -1.38	t(266) = 0.098	t(266) = -2
	p = 0.99	p = 1.00	p = 0.22
Absolute Position > Saliency	t(266) = 0.93	t(266) = 0.92	t(266) = 0
	p = 1.00	p = 1.00	p = 1.00
Useful Position > Upper Useful Position	t(266) = 1.11	t(266) = 0.53	t(266) = 1
	p = 1.00	p = 1.00	p = 1.00
Useful Position > Lower Useful Position	t(266) = 0.88	t(266) = 0.54	t(266) = 1
	p = 1.00	p = 1.00	p = 1.00
Useful Position > Saliency	t(266) = 3.19	t(266) = 1.36	t(266) = 4
	p = 0.098	p = 0.99	p = 0.00
Upper Useful Position > Lower Useful Position	t(266) = -0.23	t(266) = 0.012	t(266) = 0
	p = 1.00	p = 1.00	p = 1.00
Upper Useful Position > Saliency	t(266) = 2.08	t(266) = 0.83	t(266) = 3
	p = 0.75	p = 1.00	p = 0.06
Lower Useful Position > Saliency	t(266) = 2.31	t(266) = 0.82	t(266) = 3
	p = 0.58	p = 1.00	p = 0.07

Intro

01.

02.

Disc.

4.02)66 -2.90 0 2.84 3 0.46 0 1.12 0 1.17 0 4.48)11

Results from post-hoc tests of the linear mixed models looking at theoretical RSMs in **young** adults. 0.053

0

3.36 51 3.31

71

Study 5

Neuroimaging results

	OPA	PPA	MPA
Absolute Position > Useful Position	t(266) = -2.23	t(266) = -0.44	t(266) = -4.0
	p = 0.62	p = 1.00	p = 0.0066
Absolute Position > Upper Useful Position	t(266) = -1.15	t(266) = 0.086	t(266) = -2.9
	p = 1.00	p = 1.00	p = 0.20
Absolute Position > Lower Useful Position	t(266) = -1.38	t(266) = 0.098	t(266) = -2.8
	p = 0.99	p = 1.00	p = 0.23
Absolute Position > Saliency	t(266) = 0.93	t(266) = 0.92	t(266) = 0.4
	p = 1.00	p = 1.00	p = 1.00
Useful Position > Upper Useful Position	t(266) = 1.11	t(266) = 0.53	t(266) = 1.1
	p = 1.00	p = 1.00	p = 1.00
Useful Position > Lower Useful Position	t(266) = 0.88	t(266) = 0.54	t(266) = 1.1
	p = 1.00	p = 1.00	p = 1.00
Useful Position > Saliency	t(266) = 3.19	t(266) = 1.36	t(266) = 4.4
	p = 0.098	p = 0.99	p = 0.0011
Upper Useful Position > Lower Useful Position	t(266) = -0.23	t(266) = 0.012	t(266) = 0.05
	p = 1.00	p = 1.00	p = 1.00
Upper Useful Position > Saliency	t(266) = 2.08	t(266) = 0.83	t(266) = 3.3
	p = 0.75	p = 1.00	p = 0.061
Lower Useful Position > Saliency	t(266) = 2.31	t(266) = 0.82	t(266) = 3.3
	p = 0.58	p = 1.00	p = 0.071

Intro

01.

02.

Disc.

ЛРА

(5) = -4.020.0066 (5) = -2.90= 0.205) = -2.84= 0.23 (5) = 0.46= 1.00(5) = 1.12= 1.00(5) = 1.17= 1.00(5) = 4.48

0.0011

= 0.053= 1.00

(5) = 3.360.061 (5) = 3.31

Results from post-hoc tests of the linear mixed models looking at theoretical RSMs in **older** adults.

		F-test	<i>p</i> -value	ES [95%-CI
	<i>Half</i> - DOWN x <i>Full</i> - DOWN vs. <i>Half</i> - UP x <i>Half</i> - DOWN	F(1, 778) = 12.26	<i>p</i> < 0.001	0.016 [0.0030, 0.0
	<i>Half</i> - DOWN x <i>Full</i> - DOWN vs. <i>Half</i> - DOWN x <i>Full</i> - UP	F(1,778) = 35.16	<i>p</i> < 0.001	0.043 [0.020, 0.0
	<i>Half</i> - DOWN x <i>Full</i> - DOWN vs. <i>Half</i> - UP x <i>Full</i> - DOWN	F(1,778) = 29.60	<i>p</i> < 0.001	0.037 [0.015, 0.0
	<i>Half</i> - DOWN x <i>Full</i> - DOWN vs. <i>Full</i> - UP x <i>Full</i> - DOWN	F(1, 778) = 21.44	<i>p</i> < 0.001	0.027 [0.0090, 0.0
	<i>Half</i> - DOWN x <i>Full</i> - DOWN vs. <i>Half</i> - UP x <i>Full</i> - UP	F(1,778) = 0.16	<i>p</i> = 0.69	0.00020 [0.00, 0.0
	<i>Half</i> - UP x <i>Full</i> - UP vs. <i>Half</i> - UP x <i>Half</i> - DOWN	F(1,778) = 9.66	<i>p</i> = 0.0020	0.012 [0.0017, 0.0
	<i>Half</i> - UP x <i>Full</i> - UP vs. <i>Full</i> - UP x <i>Half</i> - DOWN	F(1, 778) = 30.64	<i>p</i> < 0.001	0.038 [0.016, 0.0
	<i>Half</i> - UP x <i>Full</i> - UP vs. <i>Half</i> - UP x <i>Full</i> - DOWN	F(1, 778) = 25.47	<i>p</i> < 0.001	0.032 [0.012, 0.0
	<i>Half</i> - UP x <i>Full</i> - UP vs. <i>Full</i> - UP x <i>Full</i> - DOWN	F(1, 778) = 17.94	<i>p</i> < 0.001	0.023 [0.0065, 0.0
	<i>Full -</i> DOWN x <i>Full -</i> UP vs. <i>Half -</i> DOWN x <i>Half -</i> UP	F(1,778) = 1.26	<i>p</i> = 0.26	0.0016 [0.00, 0.0

Intro

01.

02.

- 037]
-)74]
-)66]
- 053]
- Results from post-hoc tests of the)067] overall linear mixed model looking at the effects of pairwise 032] comparison.
-)68]
-)60]
- 047]
-)12]